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Detailed modeling of a species’ history is of prime importance for understanding how natural selection operates over time.

Most methods designed to detect positive selection along sequenced genomes, however, use simplified representations of

past histories as null models of genetic drift. Here, we present the first method that can detect signatures of strong local

adaptation across the genome using arbitrarily complex admixture graphs, which are typically used to describe the history

of past divergence and admixture events among any number of populations. The method—called graph-aware retrieval of

selective sweeps (GRoSS)—has good power to detect loci in the genomewith strong evidence for past selective sweeps and can

also identify which branch of the graph was most affected by the sweep. As evidence of its utility, we apply the method to

bovine, codfish, and human population genomic data containing panels of multiple populations related in complex ways.

We find new candidate genes for important adaptive functions, including immunity andmetabolism in understudied human

populations, as well as muscle mass, milk production, and tameness in specific bovine breeds. We are also able to pinpoint

the emergence of large regions of differentiation owing to inversions in the history of Atlantic codfish.

[Supplemental material is available for this article.]

One of the main goals of population genomics is to understand
how adaptation affects patterns of variation across the genome
and to find ways to analyze these patterns. To identify loci that
have been affected by positive selection in the past, geneticists
have developedmethods that can scan a set of genomes for signals
that are characteristic of this process. These signals may be based
on patterns of haplotype homozygosity (Voight et al. 2006;
Sabeti et al. 2007), the site frequency spectrum (Nielsen et al.
2005; Huber et al. 2016), or allelic differentiation between popula-
tions (Shriver et al. 2004; Yi et al. 2010).

Population differentiation–based methods have proven par-
ticularly successful in recent years, as they make few assumptions
about the underlying demographic process thatmay have generat-
ed a selection signal, and are generally more robust and scalable to
large population-wide data sets. The oldest of these are based on
computing pairwise FST (Wright 1949; Weir and Cockerham
1984) or similar measures of population differentiation between
two population panels across SNPs or windows of the genome
(Lewontin and Krakauer 1973; Akey et al. 2002; Weir et al.
2005).More recentmethods have allowed researchers to efficiently
detect which populations are affected by a sweep, by computing
branch-specific differentiation on three-population trees (Yi et al.
2010; Chen et al. 2010; Racimo 2016), four-population trees
(Cheng et al. 2017), or arbitrarily large population trees (Bon-
homme et al. 2010; Fariello et al. 2013; Librado and Orlando
2018) or by looking for strong locus-specific differentiation or
environmental correlations, using the genome-wide population-

covariance matrix as a null model of genetic drift (Coop et al.
2010; Günther and Coop 2013; Guillot et al. 2014; Gautier 2015;
Villemereuil and Gaggiotti 2015).

Although some of these methods for detecting selection im-
plicitly handle past episodes of admixture, none of them uses “ad-
mixture graphs” that explicitly model both divergence and
admixture in an easily interpretable framework (Patterson et al.
2012; Pickrell and Pritchard 2012). Thismakes it difficult to under-
stand the signatures of selection when working with sets of multi-
ple populations thatmay be related to each other in complexways.
Here, we introduce a method to efficiently detect selective sweeps
across the genome when analyzing many populations that are re-
lated via an arbitrarily complex history of population splits and
mergers. We modified the QB statistic (Racimo et al. 2018), which
was originally meant to detect polygenic adaptation using admix-
ture graphs. Unlike QB, our new statistic—which we call SB—does
not need gene-trait association data and works with allele frequen-
cy data alone. It can be used to both scan the genome for regions
under strong single-locus positive selection and to pinpoint
where in the population graph the selective event most likely
took place. We show the usefulness of this statistic by performing
selection scans on human, bovine, and codfish data, recovering
existing and new candidate loci while obtaining a clear picture
of which populations were most affected by positive selection in
the past.
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Results

Detecting selection on a graph

We modified the previously developed QB statistic (Racimo et al.
2018) to detect strong branch-specific deviations in single-locus al-
lele frequencies but without having to use effect size estimates
from an association study (see Methods section). We call our
new statistic SB, and we implemented it in the program GRoSS,

which stands for graph-aware retrieval of selective sweeps (Fig.
1). For each polymorphic site tested along the genome, the pro-
gram outputs an approximately x21-distributed statistic and P-value
for each branch of an admixture graph. The P-value is the probabil-
ity that, when the neutral model is true for that branch, the statis-
tic would be greater than or equal to the actual observed statistic.
The statistic is based on the allele frequency pattern observed
across different populations. Strong deviations from neutrality

TreeMix MixMapper qpGraph

Figure 1. Schematic of GRoSS workflow.
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along a particular branch of the graph at a particular site will lead
to high values of the corresponding branch-specific statistic at that
site and to low P-values.

Simulations

We performed simulations on SLiM 2 (Haller and Messer 2017),
and used ROC and precision-recall curves to evaluate the perfor-
mance of our method under different demographic scenarios
and to compare the behavior of our scores under selection and
neutrality. We used neutral simulations (s=0) as “negatives” and
simulations under selection as “positives” and evaluated how dif-
ferent score cutoffs affected the precision, recall, true-positive rate,
and false-positive rate. For each demographic scenario, we tested
four selective sweep modes: using simulations under two different
selection coefficients (s=0.1 and s= 0.01) as cases and, for each of
these, conditioning on establishment of the beneficialmutation at
>5% frequency or at >1% frequency. Each branch of each graph
had a diploid population size (Ne) of 10,000.

First, we simulated an episode of positive selection occurring
on a branch of a three-population tree with no admixture. Each
branch of the tree lasted for 500 generations. We sampled 100 in-
dividuals from each population. We applied our statistic in a re-
gion of 100 kb centered on the beneficial mutation, and kept
track of which branch in each simulation had the highest score.
As shown in Figure 2, the highest values typically correspond to
the population in which the selected mutation was introduced.
The performance of the method under both selection coefficients
is better when we condition on a higher frequency of establish-
ment of the beneficial allele, and is also better under strong selec-
tion (Fig. 3).

We also simulated more complex demographic histories, in-
cluding a six-population graph with admixture. Each branch of
the graph lasted for 500 generations.We explored two different se-
lection scenarios. In one scenario, the selective sweep was intro-
duced in one of the internal branches, whereas in another
scenario, it was introduced in one of the external branches. The
performance under this graph appears to improve relative to the
three-population scenario (Fig. 3). The reason is that the SB statistic
depends on having an accurate estimate of the ancestral allele fre-
quency (e). This estimate is calculated by taking the average of all
allele frequencies in the leaf populations; so the more leaf popula-
tions in a well-balanced graph we have, the more accurate this es-
timate will be. We also explored a larger population tree with 16
leaf populations. ROC and precision-recall curves show a similar
performance to the ones from the six-population admixture graph
(Fig. 3). The method performs slightly worse if the selected muta-
tion is introduced in a terminal branch than in an upper branch of
the graph, because the selectedmutationhasmore time to keep ris-
ing in frequency in daughter populations, if it is simulated earlier
in the process.

In addition, we explored the performance of the method
when the number of diploid individuals per population was small-
er than100. Supplemental Figures S1 and S2 show theperformance
of the methodwith 50 diploid individuals per population, Supple-
mental Figures S3 and S4 show the performance with 20 individu-
als, and Supplemental Figures S5 and S6 show the performance
with four individuals. Even when the number of individuals is
this small, we can still recover most of the simulated sweeps, espe-
ciallywhenselection is strong.Theperformanceof themethodalso
remains robust if the different population panels have highly dif-
ferent sample sizes (Supplemental Figs. S7, S8).

The assumption of constant population size might not be re-
alistic formost real-world applications. For this reason, we simulat-
ed a 5× bottleneck lasting 10 generations in two different parts of
the six-population graph. In this situation, GRoSS is still able to
identify the true branch in which the selected mutation arose
(Supplemental Fig. S9). Under a range of sample sizes, the method
performs similarly to the case without a bottleneck (Supplemental
Figs. S10–S13).

Finally, we tested the effects of graph misspecification by
simulating selection under a six-population graph with one ad-
mixture event but then feeding GRoSS two different topologies
that were different from the simulated topology. A direct compar-
ison of performance to the true topology case is impossible given
that there is not a one-to-one correspondence between the
branches of the correct graph and the wrong graphs. However,
we generally find that the branch in the wrong graphs that
completely subtends the populations that are also subtended by
the selected branch in the correct graph is the one in which selec-
tion is inferred to have occurred most of the time (Supplemental
Fig. S14). This occurs for all sample size scenarios with the excep-
tion of the case in which sample sizes are very low across the graph
(n= 4 in all terminal leaves).

Positive selection in human populations across the world

We applied ourmethod to a whole-genome data set (The 1000 Ge-
nomes Project Consortium 2015) and a SNP capture data set (Hu-
man Origins) (Patterson et al. 2012) from different populations
sampled around the world (Fig. 4) and obtained the top candidate
regions from the scan (P-value< 10−7). Many of these have been
identified in previous world-wide positive selection scans, and
some have evidence for archaic adaptive introgression. Previously
reported selection candidates that are among the top regions in-
cludeLCT/MCM6,BNC2,OCA2/HERC2,TLR, and SLC24A5 regions
in northern Europeans; the CHMP1A/ZNF276/FANCA, ABCC11,
and POU2F3 regions in East Asians; and the SLC45A2 and
SLC12A1 genes in an ancestral European population (Supplemen-
tal Tables S2, S3; Bersaglieri et al. 2004; Voight et al. 2006; Chen
et al. 2010; Ohashi et al. 2011; Grossman et al. 2013; Vernot and
Akey 2014; Mathieson et al. 2015; Racimo 2016; Racimo et al.
2016).

We find that the IGH immune gene cluster (also containing
gene FAM30A) is the strongest candidate for selection in the
1000 Genomes scan, and the signal is concentrated on the
Chinese Dai branch. This cluster has been recently reported as be-
ing under selection in a large Chinese cohort ofmore than 140,000
genomes (Liu et al. 2018). Our results suggest that the selective
pressures may have existed somewhere in southern China, as we
do not see such a strong signal in other parts of the East Asian por-
tion of the graph.

A region containing TARBP1 is the strongest candidate for se-
lection in the Human Origins scan (East Asian terminal branch).
The gene codes for an HIV-binding protein and has been previous-
ly reported to be under balancing selection (Andrés et al. 2009).
The top SNP (rs2175591) lies in an H3K27ac regulatory mark up-
stream of the gene. The derived allele at this SNP is at >50% fre-
quency in all 1000 Genomes East Asian panels but is at <2%
frequency in all the other worldwide panels, except for South
Asians, where it reaches frequencies of ∼10%. The TARBP1 gene
has been identified as a target for positive selection inmilk-produc-
ing cattle (Stella et al. 2010) and in sheep breeds (de Simoni
Gouveia et al. 2017; Mastrangelo et al. 2018). It has also been

Refoyo-Martı ńez et al.
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associated with resistance to gastrointestinal nematodes in sheep
(Keane et al. 2006). Our results suggest it may have also played
an important role during human evolution in eastern Eurasia, pos-
sibly as a response to local pathogens.

Another candidate for selection is the NFAM1 gene in East
Asians, which codes for a membrane receptor that is involved in

development and signaling of B cells (Ohtsuka et al. 2004). This
genewas also found to be under positive selection in the Sheko cat-
tle of Ethiopia, along with other genes related to immunity
(Bahbahani et al. 2018).

In the Native American terminal branch of the Human Ori-
gins scan, we find a candidate region containing two genes:

Figure 2. Evaluation of GRoSS performance using simulations in SLiM 2, with 100 diploid individuals per population panel. We simulated different selec-
tive sweeps under strong (s=0.1) and intermediate (s=0.01) selection coefficients for a three-population tree, a six-population graph with a 50%/50%
admixture event, and a 16-population tree. We obtained the maximum branch score within 100 kb of the selected site and computed the number of sim-
ulations (out of 100) in which the branch of this score corresponded to the true branch in which the selectedmutation arose (highlighted in green). (cond=
5%) Simulations conditional on the beneficial mutation reaching 5% frequency or more; (cond=1%) simulations conditional on the beneficial mutation
reaching 1% frequency or more; (Pop) population branch. The green arrow denotes the values of the statistic corresponding to the branch in which the
selected mutation arose.
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GPR156 and GSK3B. GPR156 codes for a G protein–coupled
receptor, whereas GSK3B codes for a kinase that plays important
roles in neuronal development, energymetabolism, and body pat-
tern formation (Plyte et al. 1992). We also find a candidate region
in the same branch in the protamine gene cluster (PRM1, PRM2,
PRM3, TNP2), which is involved in spermatogenesis (Schlüter
et al. 1992; Engel et al. 1992), and another region overlapping
MDGA2, which is specifically expressed in the nervous system (Lit-
wack et al. 2004).

Cattle breeding: morphology, tameness, and milk yield

We also applied GRoSS to a data set containing various cattle pop-
ulations from around the world (Supplemental Table S4; Kim et al.
2017; Upadhyay et al. 2017; da Fonseca et al. 2019).We performed
two scans, one in which we computed the SB statistic per SNP
(Supplemental Table S5; Fig. 5) and one in which we computed

it in 10-SNP windows (Supplemental Table S6; Fig. 5). Out of the
12 top candidate regions, 10 overlapped with regions previously
detected to be under selection in cattle (for review, see Randhawa
et al. 2016). Additionally, 28 of the 43 top candidate SNPs from the
single-SNP scan are also in regions that have been previously re-
ported as selection candidates.

The region located between 50 and 55 Mb contains three
members of the protocadherin gene cluster (Pcdha, Pcdhb, and
Pcdhg) (Fig. 6). The SB statistic is highest in Romanian Grey
(RO) cattle, which are well-known for their docile disposition.
Protocadherins are cell-adhesion molecules that are differentially
expressed in individual neurons (Chen and Maniatis 2013). They
have been implicated in mental retardation and epilepsy in hu-
mans (Hayashi and Takeichi 2015) and in fear-conditioning
and memory in mice (Fukuda et al. 2008) and have also been
shown to be under selection in cats (Montague et al. 2014). Genes
of the protocadherin family have also been detected to have

Figure 3. Evaluation of GRoSS performance using simulations in SLiM 2, with 100 diploid individuals per population panel. We produced precision-recall
(left) and ROC (center and right) curves comparing simulations under selection to simulations under neutrality for a three-population tree, a six-population
graph with a 50%/50% admixture event, and a 16-population tree. The right-most ROC curves are a zoomed-in version of the center ROC curves, in which
the false-positive rate is limited to be equal to or less than 0.1.
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expression and allele frequency differences consistent with adap-
tation in an analysis of tame and aggressive foxes (Wang et al.
2018).

The largest window (4.4 Mb) detected by GRoSS corresponds
to the branch leading to the Holstein (HOL) breed (Fig. 6). This
windowoverlaps regions found to be under selection inHOLusing
various tests (for review, see Randhawa et al. 2016). Some of the
outlier genes that were also identified in an earlier XP-EHH scan
(Lee et al. 2014) include VPS18, implicated in neurodegeneration
(Peng et al. 2012), and CAPN3, associated with muscle dystrophy.
The window also contains genes that are differentially expressed
between high and low milk yield cows (PLCB2 and CCDC9B)
(Yang et al. 2016).

Large regions of extreme differentiation in Atlantic codfish

Finally, we appliedGRoSS to a data set of Atlantic codfish genomes
(Supplemental Table S7; Árnason and Halldórsdóttir 2019). We
find four large genomic regions of high differentiation spanning
several megabases, on four different linkage groups: LG01, LG02,

LG07, and LG12 (Fig. 7; Supplemental Table S8). These regions
were previously detected by pairwise FST analyses (Bradbury et al.
2013; Hemmer-Hansen et al. 2013; Halldórsdóttir and Árnason
2015). They are associated with inversions that suppress recombi-
nation in heterozygous individuals and have thereby favored large
increases in differentiation between haplotypes. The signals in the
LG01, LG02, and LG07 regions are strongest among north Atlantic
populations. The LG01 signal is particularly concentrated in the
terminal branches leading to the Icelandic and Barents Sea popu-
lations. The LG02 signal is concentrated in the Icelandic terminal
branch and the parent branches of the east Atlantic/north
European populations. This region also contains a low-differentia-
tion region inside it, suggesting it may be composed of two contig-
uous structural variants, as the LG01 region is known to be
(Kirubakaran et al. 2016). The LG07 signal is concentrated in near-
ly the same branches as the LG02 signal and also in the Faroe pla-
teau terminal branch. In contrast, the highly differentiated region
in LG12 is concentrated among other branches of the east
Atlantic/north European part of the graph, including the Celtic
Sea terminal branch (Fig. 7). None of the highly differentiated

A

B

Figure 4. We ranGRoSS on human genomic data. (A) Population tree including panels from phase 3 of the 1000 Genomes Project. (B) Population graph
including imputed panels from the Human Origins SNP capture data from Lazaridis et al. (2014).
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regions appears to show strong signs of high differentiation in the
west Atlantic/North American populations.

Discussion

We have developed a method for detecting positive selection
when working with species with complex histories. The method
is fast: It only took 486 sec to run the bovine scan (including
512,358 SNPs and 36 populations) on a MacBook Air with a 1.8-
GHz Intel Core i5 processor and 8 GB of memory. Assuming a
nullmodel of genetic drift based on amultivariate normal distribu-
tion, the SB statistic is chi-squared distributed with one degree of
freedom. This is accurate as long as the graph topology is accurate
and the branches in the graph do not contain high amounts of
drift. When working with populations that diverged from each

other a long time ago, the chi-squared distributional assumption
will not hold, and in those cases, it may be useful to standardize
the scores using the mean and variance of the empirical ge-
nome-wide distribution.

In an admixture graph with K branches, there are K possible
versions of the SB statistic. If the differences in allele frequencies
at a SNP can be explained by an allele frequency shift that occurred
along branch k, then SB (k) will be large, and a P-value based on the
null drift model can be calculated from it. By design, branches
whose parent are the root node and branches that have the same
descendant nodes have the same SB scores, so selective events on
these branches are not distinguishable from each other under
this scheme.

It is important to emphasize that GRoSS works on the as-
sumption that the graph is a good descriptor of the ancestry

Figure 5. We ran GRoSS on a population graph of bovine breeds. P-values were obtained either (1) by computing chi-squared statistics per SNP, or (2)
after averaging the per-SNP statistics in 10-SNP windows with a 1-SNP step size, obtaining a P-value from the averaged statistic. Holstein andMaremmana
cattle photos obtained from Wikimedia Commons (authors: Verum; Giovanni Bidi). Romanian Grey cattle screen-shot obtained from a CC-BY YouTube
video (author: Paolo Caddeo).
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Figure 6. Zoomed-in plots ofGRoSS output for three regions found to have strong evidence for positive selection in the 10-SNP bovine scan. Genes were
retrieved using Ensembl via the Gviz R Bioconductor library (Hahne and Ivanek 2016).
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relationships among populations, which are coded in the genome-
wide covariance matrix F̂. We expect a reduction in power relative
tomethods that directly use the raw covariancematrix to assess the
evidence for positive selection (Coop et al. 2010; Günther and
Coop 2013; Guillot et al. 2014; Gautier 2015; Villemereuil and
Gaggiotti 2015) if the population history does not follow a
graph-like pattern. This is the cost of the higher interpretability
ofGRoSS. The formermethods can only serve to determinewheth-
er the population allele frequencies at a site are poorly modeled by
F̂ or whether they are better explained by environmental covari-
ates, whereas GRoSS can provide a historical interpretation of pos-
itive selection in terms of allele frequency shifts at particular
branches of the population history.

We compare GRoSS against one of the most powerful mem-
bers of this family of covariance matrix-based programs, BayPass,
in Supplemental Figure S15 (lower panel). Here, we plot a scan of
a selective sweep using the XtX statistic from BayPass (based on
the Bayenvmodel [Coop et al. 2010]) (Gautier 2015), which works
similarly to GRoSS but without a graph model. We observe that
BayPass has good power to detect the sweep but provides a single

score and therefore cannot be used by the user to localize when
in the population history the sweep took place. Furthermore, if
one compares the XtX statistic under selection and neutrality
(Supplemental Fig. S16) with the SB statistic under selection (in
the true selected branch) and neutrality (Fig. 3), one can see that
GRoSS actually outperforms BayPass at detecting selection. In sum-
mary, assuming that a graph is a good descriptor of the population
history and thatGRoSS has correctly identified the true branch un-
der selection, then theGRoSS branch-specific score performs better
than theXtX score, which cannot indicate which part of the histo-
ry was under selection.

The SB statistic is most accurate when a large number of indi-
viduals have been sampled from each population. If this is not the
case, then one can merge sister populations into larger popula-
tions, so as to increase the per-population sample size. Another op-
tion is to average the scores over windows of SNPs to obtain power
from correlated allele frequency shifts in a region (e.g., see Akey
et al. 2002; Skoglund et al. 2017) at the expense of losing spatial
resolution across the genome owing to larger test regions, as we
did here in the bovine data set example. The statistic, however,

Figure 7. Large regions of high differentiation in the codfish data. Branches colored in orange are branches whose corresponding SB scores evince the
high-differentiation region. Branches colored in red are branches whose corresponding SB scores evince the high-differentiation region and have at least
one SNP with −log10 (P) > 5 inside the region.
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does not account for the structure of linkage disequilibriumwithin
or between windows.

We have found the method performs best when there are
many leaves in a graph because it uses a population-averaged allele
frequency to estimate the ancestral allele frequency in the graph.
We therefore recommend using this method when working with
more than a few populations at a time to make this estimate
as accurate as possible. A possible future improvement of the
method could be the incorporation of a model-based ancestral al-
lele frequency estimation scheme to address this issue. For exam-
ple, to more appropriately account for the population covariance
structure, we could use the unbiased linear estimate of ewith min-
imum variance, ê = (1T F̂−1p)/(1T F̂−11) (Bonhomme et al. 2010).
However, we found this estimate generates an excess of significant
P-values whenworkingwith allele frequencies at the boundaries of
fixation and extinction or when there are several populations in
which the SNP is not segregating, owing to poor modeling of
frequency dynamics by the multivariate normal distribution.
Previous applications of these types of methods have also replaced
the ancestral allele frequency by the mean population frequency
(Berg and Coop 2014; Berg et al. 2017a), as we did, or simply use
models without a root (Yi et al. 2010).

Another critical issue is that the more branches one tests, the
more of a multiple-testing burden there will be when defining sig-
nificance cutoffs. In a way, our method improves on previous ap-
proaches to this problem because, given an inferred admixture
graph, one does not need to perform a test for all possible triplets
or pairs of populations, as one would need to do when applying
the PBS statistic (Yi et al. 2010) or pairwise FST methods (Wright
1949;Weir and Cockerham 1984), respectively. Instead, ourmeth-
od performs one test per branch. For example, if the graph is a root-
ed tree with m leaves and no admixture, the number of branches
will be equal to 2m−2, whereas the number of possible PBS tests

will be equal to 3
m
3

( )
, and the number of possible pairwise FST

tests will be equal to
m
2

( )
, both of which grow much faster with

largerm than does 2m−2. When working with a multipopulation
graph, this leaves the potential user with the only option of calcu-
lating a battery of tests, some of which detect the sweep and some
of which do not.

To further illustrate this point, in Supplemental Figure S15
we show how pairwise FST, PBS, and GRoSS can be used to detect
a single selective sweep (s=0.1) in two different branches of a
six-population graph. Neither FST nor PBS uses an admixture
graph model. Pairwise FST works by simply calculating the FST sta-
tistic between two populations but cannot distinguish which was
the population that underwent a sweep. PBS is a linear combina-
tion of log-transformed FST values that allows one to localize the
sweep to one of the branches of a three-branch unrooted tree.
However, as stated before, the number of possible PBS tests grows
very fast with the number of populations, indeed faster than the
number of FST tests. In Supplemental Figure S15, we only plot
the 15 possible FST tests that could be run on the depicted graph.
There are 60 possible PBS tests that we could have run on this same
graph, but we only show three of these, configured in a way that
we knew a priori that only one test would contain the selected
branch. Although it is clear that both PBS and FST have good power
to detect the sweep, it is also clear that it would be a herculean task
to visually infer the true branch in which the selected mutation
arose from all of the possible PBS or FST tests one could run in a
graph.

Although the SB statistic is fast and easy to compute, it is not
as principled as other approaches for multipopulation selection
that rely on explicit models of positive selection (e.g., Lee and
Coop 2017). This means that it only detects significant deviations
from a neutral null model and does not provide likelihoods or pos-
terior probabilities supporting specific selection models. We rec-
ommend that, once a locus with high SB has been detected in a
particular branch of a graph, biologists should perform further
work to disentangle exactly what type of phenomenon would
cause this value to be so high and to test among competing selec-
tion hypotheses.

Among the genes that emerge when applying our method to
human data, we found several known candidates, like LCT/MCM6,
SLC45A2, SLC24A5, POU2F3, OCA2/HERC2, and BNC2. We also
found several new candidate regions, containing genes involved
in the immune response, like the TARBP1 and NFAM1 genes in
East Asians. Additionally, we found new candidate regions in
Native Americans, like GSK3B and the protamine gene cluster.

Analysis of the bovine data set yielded numerous regions that
may be implicated in the breeding process. One of the strongest
candidate regions contains genes involved in musculoskeletal
morphology, including CEP120 and PRDM6, and GRoSS narrows
this signal down to the branch leading to the Maremmana breed.
This is an Italian beef cattle breed that inhabits the Maremma re-
gion in Central Italy and has evolved a massive body structure
well adapted to draft use in the marshy land that characterizes
the region (Bongiorni et al. 2016). When comparing muscle sam-
ples between Maremmana and the closely related Chianina (CH)
breed, Gene Ontology categories related to muscle structural pro-
teins and regulation of muscle contraction have been reported to
be enriched for differentially expressed genes. Additionally, the
Maremmana is enriched for overexpressed genes related to hyper-
trophic cardiomyopathy pathways (Bongiorni et al. 2016).

Another strong candidate region is the protocadherin gene
cluster, associated with neuronal functions in humans and mice
(Fukuda et al. 2008; Chen and Maniatis 2013; Hayashi and
Takeichi 2015) and shown to be under positive selection in domes-
ticated cats and foxes (Montague et al. 2014; Wang et al. 2018).
GRoSS identifies this region as under selection in the RO breed ter-
minal branch. Given that this breed is popularly known to be very
docile, it is plausible that this gene clustermight have been a target
for selection on behavior during the recent breeding process.

Additionally, GRoSS detects a very large 4.4-Mb region as a se-
lection candidate in the HOL breed, currently the world’s highest-
production dairy animal. This region overlaps several candidate
genes earlier identified to be under selection in HOL using other
methods (for an extensive review, see Randhawa et al. 2016).
These genes are related to several traits usually targeted by breeding
practices, such as behavior, muscle development, and milk yield.

Our method also recovered previously reported regions of
high differentiation among Atlantic codfish populations and
served to pinpoint where in the history of this species the inver-
sions may have arisen or, at least, where they have most strongly
undergone the process of differentiation between haplotypes.
The largest of these regions is in LG01 and is composed of two ad-
jacent inversions covering 17.4 Mb (Kirubakaran et al. 2016),
which suppress recombination in heterozygous individuals and
promote differentiation between haplotypes. The inversions effec-
tively lock together a supergene of alleles at multiple loci
(Kirubakaran et al. 2016). Two behavioral ecotypes—a deep-sea
frontal (migratory) ecotype and a shallow-water coastal (station-
ary) ecotype—have been associated with inversion alleles in the
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region (Pálsson and Thorsteinsson 2003; Pampoulie et al. 2008;
Thorsteinsson et al. 2012). Several putative candidate selected
genes are located within the LG01 inversions (Pogson 2001;
Pampoulie et al. 2015; Kirubakaran et al. 2016) that may be of
adaptive value for deep sea as well as long-distance migration.

Similarly, the other large inversions observed in linkage
groups LG02, LG07, and LG12 (5, 9.5, and 13 Mb, respectively)
also suppress recombination (Sodeland et al. 2016; Berg et al.
2017b). Allele frequency differences observed between individuals
living offshore and inshore environments are suggestive of eco-
logical adaptation driving differentiation in these regions
(Sodeland et al. 2016; Berg et al. 2017b; Barth et al. 2017).
Previously, a pairwise FST outlier analysis of populations in the
north (Greenland, Iceland, and Barents Sea localities combined)
versus populations in the south (Faroe Islands, North Sea, and
Celtic Sea combined) showed clear evidence of selection in these
regions (Halldórsdóttir and Árnason 2015). However, in compari-
sons of west (Sable Bank,Western Bank, Trinity Bay, and Southern
Grand Banks combined) with either north or south localities, only
some of these regions displayed signatures of high differentiation
(Halldórsdóttir and Árnason 2015), indicating these inversions
had different spatiotemporal origins. By modeling all these popu-
lations together in a single framework, our method provides a way
to more rigorously determine in which parts of the graph these in-
versions may have originated (Fig. 7) and suggests they were large-
ly restricted to East Atlantic populations.

In conclusion, GRoSS is a freely available, fast, and intuitive
approach to testing for positive selection when the populations
under study are related via a history of multiple population splits
and admixture events. It can identify signals of adaptation in a spe-
cies by accounting for the complexity of this history while also
providing a readily interpretable score. This method will help evo-
lutionary biologists and ecologists pinpointwhen andwhere adap-
tive events occurred in the past, facilitating the study of natural
selection and its biological consequences.

Methods

Theory

We assume that the topology of the admixture graph relating a set
of populations is known and that we have allele frequency data
for all the populations we are studying. For a single SNP, let p be
the vector of allele frequencies across populations. We then
make a multivariate normal approximation to obtain a distribu-
tion with which we can model these frequencies under neutrality
(Nicholson et al. 2002; Bonhomme et al. 2010; Coop et al. 2010;
Günther and Coop 2013):

p � MVN(e, e(1− e)F), (1)

where F is the neutral covariance matrix, and e is the ancestral al-
lele frequency of all populations (Bonhomme et al. 2010). We use
the genome-wide covariancematrix F̂ as an estimate of the neutral
covariance matrix. This matrix describes the covariance structure
of allele frequencies across populations (Bonhomme et al. 2010),
and each entry f̂ij in it is computed as follows:

f̂ij = Cov
pi���������

e(1− e)
√ ,

pj���������
e(1− e)

√
( )

, (2)

where pi is the allele frequency at population i, pj is the allele fre-
quency at population j, and the covariance is computed across
all polymorphic sites in the genome. In practice, the ancestral

allele frequency e is unknown, so themean allele frequency among
populations �p can be used as an approximate stand-in. We also
compute the covariance matrix after filtering out sites with a mi-
nor global allele frequency <1%, because sites in the boundary of
fixation or extinction are most likely to violate our assumptions
of multivariate normality (Nicholson et al. 2002).

We then obtain a mean-centered version of the vector p,
which we call y:

y = p− e1 � MVN(0, e(1− e)F), (3)

where 1 is a column vector of as many ones as there are popula-
tions. For an arbitrarily defined, mean-centered vector b with
the same number of elements as there are populations,

yTb � N(0, e(1− e)bTFb). (4)

Then, standardizing the square of yTb yields a chi-squared-
distributed statistic:

(yTb)2

e(1− e)bTFb
� x21. (5)

Our test statistic—which we call SB—is therefore defined as

SB = ((p− �p1)Tb)2

�p(1− �p)bT F̂b
(6)

and should approximately follow a x21 distribution under neutral-
ity. The key is to choose a vectorb that represents a specific branch
of our graph. Essentially, for a branch k, the elements of its corre-
sponding branch vector bk are the ancestry contributions of that
branch to each of the populations in the leaves of the graph. For
a more detailed explanation of how to construct this vector, see
Racimo et al. (2018). If we chooseb to be the vector corresponding
to branch k when computing the statistic in Equation 6, then sig-
nificant values of the statistic SB(k) will capture deviations from
neutrality in the graph that are attributable to a disruption that oc-
curred along branch k.

If we only have a few genomes per population, the true
population allele frequencies will be poorly estimated by our sam-
ple allele frequencies, potentially decreasing power. However, we
can increase power at the cost of spatial genomic resolution
and rigorous statistical interpretation by combining information
from several SNPs into windows (Akey et al. 2002; Skoglund
et al. 2017). We can compute the average χ2 statistic over all
SNPs in each window and provide a new P-value for that averaged
statistic.

Implementation

We implemented the SB statistic in a program called graph-aware
retrieval of selective sweeps (GRoSS) that uses the R statistical lan-
guage (R Core Team 2019). The program makes use of the admix-
turegraph library (Leppälä et al. 2017). We also wrote a module
that allows one to input a file specifying the admixture graph topol-
ogy directly.

Figure 1 shows a schematic workflow for GRoSS. The user
begins by estimating an admixture graph using genome-wide
data, via a program like TreeMix (Pickrell and Pritchard 2012),
MixMapper (Lipson et al. 2013), or qpGraph (Patterson et al.
2012). Then the user writes the topology of the graph to a text
file. The format of this file can be either the dot-format or the input
file format for qpGraph, so it can be skipped if the initial step was
run using qpGraph. Then, the user inputs the graph topology and
a file with major/minor allele counts for each SNP into GRoSS.
The allele counts can also be polarized as ancestral/derived or
reference/alternative. GRoSS will compute the genome-wide
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covariance matrix and the b vectors for each branch and then will
calculate the SB scores and corresponding P-values, which can then
be plotted.

Simulations

Weused SLiM2 (Haller andMesser 2017) to simulate genomic data
and test how our method performs at detecting positive selection,
with sample sizes of 100, 50, 25, and four diploid genomes per
population (Figs. 2, 3; Supplemental Figs. S1–S6). Unless otherwise
stated, we simulated a genomic region of length 10Mb, a constant
effective population size (Ne) of 10,000, amutation rate of 10−8 per
base-pair per generation, and a uniform recombination rate of 10−8

per base-pair per generation. We placed the beneficial mutation in
the middle of the region, at position 5 Mb. We used a burn-in pe-
riod of 100,000 generations to generate steady-state neutral varia-
tion. For each demographic scenario that we tested, we simulated
under neutrality and two selective regimes, with selection coeffi-
cients (s) of 0.1 and 0.01.We considered two types of selection sce-
narios for each demographic scenario: one in which we condition
on the beneficial mutation reaching >1% frequency at the final
generation of the branch inwhichwe simulated the beneficialmu-
tation and one in which we condition the mutation reaching >5%
frequency.We discarded simulations that did not fulfill these con-
ditions. We set the time intervals between population splits at 500
generations for all branches of the population graph in the three-
population, six-population, and 16-population graphs. To speed
up the simulations, we scaled the values of the population size
and of time by a factor of 1/10 and, consequently, the mutation
rate, recombination rate, and selection coefficients by a factor of
10 (Haller and Messer 2017).

Selection of candidate regions

Given the myriad of plausible violations of our null multivariate-
normal model (see Discussion), we do not expect the P-values of
the SB statistic to truly reflect the probability one has of rejecting
a neutral model of evolution. To show this, we assessed the fit of
our SB statistic under neutrality to the expected chi-squared distri-
bution, using density plots and qq-plots. We simulated a six-pop-
ulation graph with one admixture event and sampled 100, 50, 25,
or four genomes from each population (Supplemental Figs. S17–
S20, respectively). Although the score and chi-squared distribu-
tions are quite close to each other for almost all branches, they
are not a perfect fit. Thus, users should be careful about using these
P-values at face value. In Supplemental Table S1, we show the pro-
portion of observations that are larger than the chi-squared statis-
tic that would correspond to a particular P-value cutoff for
different choices of cutoffs.

We therefore see these P-values as a guideline for selecting re-
gions as candidates for positive selection rather than a way for rig-
orously determining the probability that a region has been
evolving neutrally. In all applications below, we used arbitrary P-
value cutoffs to select the top candidate regions. These empirical
cutoffs vary across study species and also depend on the specific
scheme we use to calculate the SB statistic (per-SNP or averaged
over awindow), andwe do not claim these cutoffs to have any stat-
istical motivation beyond being convenient ways to separate re-
gions that lie at the tails of our empirical distribution.

Alternative approaches could involve using a randomization
scheme or generating simulations based on a fitted demographic
model to obtain a neutral distribution of loci and derive a P-value
from that. Although any of those approaches could be pursued
with the SB framework, we do not pursue any of those approaches
in this paper. We think that the chosenmode of randomization or

the fitted demographic parameters will also necessarily rely on as-
sumptions about unknown or unmodeled parameters and may
provide unmerited confidence to the cutoff that we could end
up choosing. Instead, we recommend that our chi-squared-distrib-
uted P-values are utilized as a way to prioritize regions for more ex-
tensive downstreammodeling and validation (e.g., usingmethods
like those described by Akbari et al. 2018; Kern and Schrider 2018;
Sugden et al. 2018).

GRoSS users should also be mindful of multiple testing and
use statistical corrections that account for the fact that a selection
scan involves testingmultiple sites across the genomes,whichmay
not be independent owing to linkage. In the particular case of
GRoSS, if one is testing for selection across multiple branches of a
complex graph, one should also aim to correct for multiple testing
across branches.

Human data

Weused data from Phase 3 of the 1000Genomes Project (The 1000
Genomes Project Consortium 2015) and a SNP capture data set of
present-day humans from 203 populations genotyped with the
Human Origins array (Patterson et al. 2012; Lazaridis et al.
2014). The SNP capture data set was imputed using SHAPEIT2
(Delaneau et al. 2013) on the Michigan Imputation Server (Das
et al. 2016) with the 1000 Genomes data as the reference panel
(Racimo et al. 2018). We used inferred admixture graphs that
were fitted to this panel using MixMapper (v1.02) (Lipson et al.
2013) in a previous publication (Racimo et al. 2018). For the
1000 Genomes data set, the inferred graph was a tree in which
the leaves are composed of panels from seven populations:
Southern Han (CDX), Han Chinese from Beijing (CHB), Japanese
from Tuscany (JPT), Toscani (TSI), Utah Residents (CEPH) with
Northern and Western European Ancestry (CEU), Mende from
Sierra Leone (MSL), and Esan from Nigeria (ESN) (Fig. 4). For the
HumanOrigins data set, the inferred graphwas a seven-leaf admix-
ture graph that includesNative Americans, East Asians, Oceanians,
Mandenka, Yoruba, Sardinians, and Europeans with high ancient-
steppe (Yamnaya) ancestry (Fig. 4). This graph contains an admix-
ture event from a sister branch to Sardinians and a sister branch to
Native Americans into Europeans; the latter represents the ancient
steppe ancestry known to be present in almost all present-day
Europeans (but largely absent in present-day Sardinians).

We removed sites with <1% minor allele frequency or where
at least one population hadno coverage.We then ranGRoSS on the
resulting SNPs in each of the two data sets (Supplemental Tables
S2, S3). We selected SNPs with −log10 (P) larger than seven and
merged SNPs into regions if they were within 100 kb of each other.
Finally, we retrieved all HGNC protein-coding genes that overlap
each region, using biomaRt (Durinck et al. 2009).

Bovine data

We assembled a population genomic data set (Supplemental
Table S4) containing different breeds of Bos taurus using (1)
SNP array data from Upadhyay et al. (2017), corresponding to
the Illumina BovineHD Genotyping BeadChip (http://dx.doi.org/
10.5061/dryad.f2d1q); (2)whole-genome shotgundata from10 in-
dividuals from the indigenous African breed NĎama (BioProject
ID: PRJNA312138) (Kim et al. 2017); (3) shotgun data from two
commercial cattle breeds (HOL and Jersey; BioProject IDs:
PRJNA210521 and PRJNA318089, respectively); and (4) shotgun
data for eight Iberian cattle breeds (da Fonseca et al. 2019).

We used TreeMix (Pickrell and Pritchard 2012) to infer an ad-
mixture graph (Supplemental Fig. S21) using allele counts for
512,358 SNPs in positions that were unambiguously assigned
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to the autosomes in the cattle reference genome versionUMD3.1.1
(The Bovine Genome Sequencing and Analysis Consortium et al.
2009) using SNPchiMp (Nicolazzi et al. 2015). For shotgun data, al-
lele counts were obtained from allele frequencies calculated in
ANGSD (Korneliussen et al. 2014) for positions covered in at least
three individuals. We removed SNPs for which at least one panel
had no coverage or in which the minor allele frequency was <1%.

We ruled out the possibility that the intersection of shotgun
and SNP capture data could be problematic by fitting a TreeMix tree
using data from both approaches for the same breeds where avail-
able. No batch effects were observed (Supplemental Fig. S22), and
in the end, we chose the type of data for which there weremore in-
dividuals sequenced for each breed.

We applied the statistic to the TreeMix-fitted graph model in
Figure 5.Weperformed the scan in twoways: In one, we computed
a per-SNP chi-squared statistic, from which we obtained a P-value
(Supplemental Table S5), and in the other, we combined the chi-
squared statistics in windows of 10 SNPs (Supplemental Table
S6), with a step size of one SNP, obtaining a P-value for a particular
window using its average SB score (Fig. 5).We used this windowing
scheme because of concerns about small sample sizes in some of
the populations and because we aimed to pool information across
SNPswithin a region. After both scans, we combinedwindows that
were within 100 kb of each other into larger regions and retrieved
HGNC and VGNC genes within a ±100-kb window around the
boundaries of each region using biomaRt (Durinck et al. 2009)
with the April 2018 version of Ensembl.

Codfish data

Codfish genomes were obtained from Halldórsdóttir and Árnason
(2015) and Árnason and Halldórsdóttir (2019). These were ran-
domly sampled from a large tissue sample database (Árnason and
Halldórsdóttir 2015) and the J. Mork collections from populations
covering a wide distribution from the western Atlantic to the
northern and eastern Atlantic (Supplemental Fig. S23; Supplemen-
tal Table S7). The populations differ in various life-history and oth-
er biological traits (Jakobsson et al. 1994; ICES 2005), and their
local environment ranges from shallow coastal water (e.g., western
Atlantic and North Sea) to waters of great depth (e.g., parts of
Iceland and Barents Sea). They also differ in temperature and
salinity (e.g., brackish water in the Baltic). Details of the molecular
and bioinformatic methods used to obtain these genomes are
given by Halldórsdóttir and Árnason (2015) and Árnason and
Halldórsdóttir (2019).

We ran ANGSD (Korneliussen et al. 2014) on the genome se-
quences from all populations, computed base-alignment quality
(Li 2011), adjusted mapping quality for excessive mismatches,
and filtered for mapping quality (30 or more) and base quality
(20 ormore).We then estimated the allele frequencies in each pop-
ulation at segregating sites using the –sites option of ANGSD.

We applied the SB statistic to the graph model in Figure 7, es-
timated using TreeMix (Pickrell and Pritchard 2012), allowing
for three migration events (Supplemental Fig. S24). We removed
SNPs in which at least one panel had no coverage or in which
the minor allele frequency was <1%, and we only selected sites
in which all panels had two or more diploid individuals covered.
We performed the scan by combining the per-SNP chi-squared
statistics in windows of 10 SNPs with a step size of five SNPs, ob-
taining a P-value for a particular window using its average SB
score (Supplemental Figs. S25–S28). In a preliminary analysis, we
identified four large regions of high differentiation related to struc-
tural variants, which span several megabases (see Results and
Discussion). In our final analysis, we excluded sites lying within
linkage groups that contain these regions from the TreeMix-fitting

and covariance matrix estimation, so as to prevent them from bi-
asing our null genome-wide model.

Software availability

GRoSS is freely available on GitHub (https://github.com/
FerRacimo/GRoSS) and as Supplemental Code.
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